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Analog Amp Linearity Characterization via
Probability Weighted Multitone Power Ratio Testing

Abstract
This application note discusses methodology for testing
analog amplifiers designed to process DMT (discrete
multitone) waveforms, also known as OFDM (orthogonal
frequency division multiplexing) waveforms. There is a brief
introduction of the DMT waveform where it’s pointed out that
a troublesome characteristic of the DMT waveform is a
probabilistically large peak to average amplitude ratio. The
application note then goes on to derive the probability
density distribution for the DMT peak to average ratio (PAR)
in preparation for presenting a test methodology. It then
discusses the concept of the MTPR (multitone power ratio)
test, which consists of a plethora of frequency domain
impulses, uniformly spaced over the bandwidth of interest,
with the characteristic that periodically a frequency impulse
is “missing”, giving the appearance of a “spectral notch”. The
object of the test is to pass this MTPR test waveform through
the amplifier under test and observe the depth of the
“notches” at the output of the amplifier, which will be “filled-
in” due to any amplifier nonlinearities. Further discussions
go on to state that such testing should be done with several
MTPR test vectors, each with a unique peak to average ratio,
and the composite MTPR of the amplifier is the probability
weighted sum of the individual MTPR responses.

1.0 Introduction
The testing of analog amplifiers designed for use with a DMT
waveform presents challenges due to the potentially large
peak to average ratio (PAR)  (See Note 1). Specifically,
while the amplifier may have sufficient dynamic range to
handle the average signal level, it may lack “headroom” to
pass the signal peak amplitude without clipping or
compressing. This potentially large peak to average ratio
(PAR) is somewhat problematic of multi-carrier modulation
schemes and does not exist to the same extent for single
carrier systems. The required test methodology for
waveforms that exhibit large PARs should be treated
somewhat differently than that for single carrier systems
where the PAR is more deterministic. This type of testing is
the subject of this Application Note.

NOTE:

1. Peak to average ratio (PAR) is also known as the “crest factor”.

2.0 The DMT Waveform
The idea behind DMT (discrete multitone modulation) is the
partitioning of the available bandwidth into frequency
subbands, or bins, and assigning a low baud rate modulated
carrier to each bin center. The rationale is that over the
subband bandwidth, the channel looks relatively benign and
hence will require minimal equalization, which in turn
simplifies implementation. This frequency bin approach is a
natural for modulation by the inverse FFT and demodulation
by the FFT, which gives rise to a particular subset of DMT
called OFDM (orthogonal frequency division multiplexing).
Basically, OFDM is the conversion of a modulating data
vector, representing modulation symbols for each of the
parallel frequency tones, into a time domain sequence for
transmission over a channel terminating in an OFDM
demodulator for extraction of the data vector. Figure 1 shows
a block diagram of the basic DMT/OFDM structure where pi
and qi represent the modulating/demodulating tones.

The drawback to DMT in general is a bothersome peak to
average ratio associated with the channel waveform due to
possible subcarrier instantaneous summation. For ADSL,
with a possible 256 carriers, this peak can be obviously
large, but fortunately does not occur very often. The
theoretical limit on the PAR, given constant envelope
signaling on each DMT carrier, is 10*log10(M), where M
represents the number of DMT carriers.   Fortunately, this
worst case condition seldom happens. For the case where
the number of carriers is reasonably large, the probability
distribution on a per sample basis is Gaussian distributed
based on the central limit theorem, a fact which is germane
to the next topic.
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FIGURE 1. DMT BASIC STRUCTURE
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3.0 The DMT Peak to Average PDF
We now consider the probability of a given PAR occurring
assuming that the generating waveform is noise like with a
Gaussian distribution. As previously mentioned, this
assumption is justified by the central limit theorem [4]. The
expression for the peak to average probability for a
particular peak value is given by Equation 1 (derived in the
appendix) as purview

where N is the number of points in the FFT (assuming FFT
based processing - see Section 2.0), B is the interval of
interest about the peak value x in question (see Appendix),
and Q is the traditional normal distribution probability
function. Equation 1 defines the probability distribution and
Figure 2 plots this result for various values of x for an ADSL
FFT (See note 2), which has a block length of 512 points
[1]. It was found that the most likely PAR for ADSL is
slightly greater than three.

4.0 Traditional Test Methods
Traditional quantification of an amplifier’s linearity has
evolved around the concept of total harmonic distortion
(THD), mainly for simplicity reasons. In this test a single tone
is applied at the input of the amplifier, and at the output the
ratio between the desired signal and all distortion
components is measured. This measure of distortion (using
a single tone) is at best an approximation for any modulated
signal. One perhaps can make an argument that the THD
technique somewhat represents the narrow-band single
carrier case but it is felt that it is totally unacceptable for the
multi-carrier case.

NOTE:

2. ADSL - Asymmetric Digital Subscriber Line.

5.0 The MTPR Test
Modifying a classic technique from FDM (see note 3) analog
technology for testing system linearity, we define the concept
of the MTPR (multitone power ratio) test. This test consists
of a plethora of frequency domain impulses, uniformly
spaced over a bandwidth of interest, with the characteristic
that periodically a frequency impulse is “missing” giving the
appearance of a spectral notch. The time series
representation of this waveform for the case where every
16th tone is absent is given as

where L = 256 for ADSL, Ωi = 2πi/L and the term θi
represents the starting phase of the ith tone (see note 4).

Figure 3 represents the spectrum of this test vector. Notice
that the comb spectrum has suppressed tones located
periodically in the spectrum. The frequency impulses are
separated by the DMT carrier spacing [2] and each carrier of
the comb is given a controlled starting phase θi [3] to
constrain the PAR. Specifically, each tone’s starting phase is
adjusted to establish a desired PAR (see note 5) and the
average signal level of the test vector is adjusted for a
certain “backoff level” below full scale.

The object of the test is to pass this test waveform through
the amplifier under test and observe at the output the depth
of the “notches” with respect to the level of the adjacent
carriers. Factors that contribute to “filling-in” of the output
notches are the intermodulation characteristics of the analog
amplifier and the residual noise floor. It is felt that this testing
technique better represents the actual scenario present in
the case of the DMT/OFDM spectrum, where it is important
to maintain a high signal to distortion ratio in each of the
frequency bins. Typical aggregate MTPR requirements for
ADSL are on the order of 65dB [1] (i.e. notches need to have
a depth of at least 65dB).

The implementation of this test is probably more efficiently
performed via DSP processing by storing the test vector of
Equation 2, with a known PAR value, in a high speed
memory buffer and repeatedly playing the signal out via a
digital-to-analog interface. Typically, the output of the
amplifier is also digitally processed, via an analog-to-digital
interface, for ease of analysis. Figure 4 shows the block
diagram of such a test setup.

NOTES:

3. Frequency Division Multiplexing.

4. As pointed out in Section 2.0 of this Application Note, a more
efficient technique for generation of this time series is via the
inverse FFT.

5. To illustrate, the worst case PAR occurs when summing cosine
waveforms all with zero starting phase. By scrambling the
starting phase of each term in the summation, we can establish
a desired PAR between deterministic limits.
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6.0 Probability Weighted MTPR Test
We are suggesting that the overall multitone power ratio
(MTPR), as specified at the DMT system level, represents a
probability weighted number over a specified PAR range
rather than a MTPR that needs to be achieved at the worst
case PAR. For example, suppose that an ADSL DMT
(N = 512) (see note 6) system level requirement for a
particular amplifier specifies a signal to intermodulation ratio
of 65dB for any given frequency bin with the probability of a
“clip” (hard limit) of 10-7. From Equation 1, we find the value
of x that corresponds to the clip probability, but this only
determines where the amplifier clips and does not
necessarily describe the linearity of the amplifier. For
example, if the amplifier were designed to maintain a THD of
65dB for an equivalent sinewave stimulus with a sinusoidal
peak value near the clipping level, then the amplifier would
be over designed. Rather, we need to consider the statistical
nature of the DMT signal while testing the amplifier linearity.
Specifically, those peak values that infrequently occur will
not significantly contribute to the intermodulation noise level.
Taking this viewpoint will result in a more optimal test of the
amplifier and hence a more optimal amplifier design.

To reiterate, designing a line driver to handle a peak that
infrequently occurs may lead to a suboptimal design from a
cost point of view. We would certainly want to have a design
that can handle a high percentage of the peaks with very low
distortion, but perhaps we would concede to have low
probability peaks suffer a slight degradation in linearity in
order to reduce the manufacturing costs (i.e., a weak
nonlinearity as opposed to a hard limit) (see note 7).

We now state the following assumptions in order to establish
the framework for the probability weighted testing.

1. All MTPR test vectors will have a PAR that is less than or
equal to the specified clipping amplitude.

- For example, for ADSL the PAR for a clip probability of
10-7 is about 5.3. This establishes the maximum PAR
we will generate.

2. All MTPR test vectors will be within the dynamic range of
the amplifier (i.e., no clipping at the amplifier output).

- The maximum PAR should be confined to be within the
dynamic range of the amplifier. For example, for ADSL
the PAR for a clip probability of 10-7 is about 5.3, thus
we adjust the amplitude of the test signal at the input of
the amplifier (i.e., lower average value) so that the out-
put of the amplifier passes this 5.3 PAR without clipping.

3. All MTPR test vectors (waveforms) will have a PAR less
than the assumed maximum (for which the amplifier was
designed to handle).

- The amplifier may exhibit a weak nonlinearity over this
range of PAR but it must not have a “hard” limit.

4. All MTPR testing may be done with repetitive test vectors;
that is, continuous replaying of a single unique PAR test
vector.

- This assumption allows us to use averaging techniques
to reduce measurement error. It also facilitates testing
by allowing us to work with “continuous” waveforms
instead of signal bursts.

NOTES:

6. Generating 256 real tones via an IFFT requires an input vector
of 512 Hermitian symmetric points.

7. One could argue that during the duration of the transmitter
symbol containing the high PAR, and because of the amplifier
weak nonlinearity, this particular symbol will require assistance
from forward error control (FEC) to prevent a degradation in the
BER.
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5. After measuring the individual MTPRs for each unique
PAR input test vector, the overall composite average
MTPR will be calculated as

where Pi = probability of the PAR for the ith measurement
(reference Equation 1).

To illustrate the process, Figure 5 shows a representative
MTPR vs PAR measurement of an amplifier prior to
calculation of the average MTPR by probability weighting
and summation (i.e., averaging). To summarize Figure 5, we
show the amplifiers MTPR capability vs several input test
vector PARs. The scatter plot shows that the amplifier’s
MTPR starts to degrade as the PAR approaches the
specified limit. Again, we are not talking about a strong
amplifier nonlinearity, but rather about a weak nonlinearity
which is proportional to the PAR value. However - to reiterate
- because the probability of these extreme PAR values is
sharply decreasing, the overall system MTPR degradation
due to large PAR values is slight. This is expressed by the
probability averaging (Equation 3) utilizing the PAR
distribution (Equation 1).

7.0 Conclusions
It is postulated that when a DMT system specification
specifies a required MTPR with a given PAR clipping level,
what is being specified is an average PAR requirement and
not a worst case requirement. That is, for a given range of
PAR (i.e., dynamic range), the system designer wants a
certain average MTPR performance when the input DMT
waveform represents randomly modulated data. As shown in
this Application Note, this randomly modulated DMT
waveform will have a PAR, for any given transmit symbol,
that is not uniformly distributed. That is, over the given PAR
range, the probability of a given peak value occurring near
the range extremes, for any transmitted symbol, is
statistically less likely. Thus, the hardware designer can
design an amplifier that exhibits superior performance for the
most probable PAR values with an allowable slight
degradation in performance for those PARs that are the least
likely. This will result in a more optimal design. The important
point is that when the measured MTPR’s over the required
PAR range are weighted with the PAR probability density, we

will end up with an overall performance that meets the
required system level MTPR number in a more optimal
manner than a simple worst case design. This will prevent
over designing the analog hardware.
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Appendix
Assume that we are using N point IFFTs to generate a real
waveform (N/2 unique samples with the remaining samples
exhibiting Hermitian symmetry). Assume also that each
tonal carrier can be modulated with a very high order
random QAM signal such that any given tonal carrier
appears to be modulated with quadriphase white noise.
From the central limit theorem, we assume that the
composite time domain waveform can be modeled as white
Gaussian noise; thus, we will start our analysis by assuming
that the Q function is an appropriate description of the time
domain waveform on a sample by sample basis. The Q(x)
function with zero mean and unit variance is defined in
Equation A1 along with the Erfc(x) and the Erf(x) functions.

The probability of a given PAR occurring within a given
discrete range |∆| is presented in Equation A2.

The first term on the right represents the probability of one or
more samples having a value that falls within the range of
|∆ | given a block of N samples. The second term on the right
gives the probability that the value that fell within |∆ | is
actually the peak value for an N block of data (i.e., no other
values exceed this value). We now concentrate on the first

MTPR sum MTPRi * Pi( ) ″ i″∀= (EQ. 3)
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term on the right. As the interval |∆ | becomes vanishingly
small, the quantity Q(x) - Q(x + ∆) also becomes arbitrarily
small. We can expand the expression [1 - 2{Q(x) - Q(x + ∆)}]N

using the binomial expansion and for a sufficiently small
interval, it will suffice to keep only the first two terms of the
expansion. This allows us to closely approximate the
expression as [1 - 2{Q(x) - Q(x + ∆)}]N ≈ 1 - 2N{Q(x) - Q(x +
∆)}. We can then rewrite Equation A2 as shown in Equation
A3.

Referring to Equation A3, we can transform the difference
into a derivative by dividing and multiplying by the quantity ∆
and using the well known limit theory. We can then rewrite
Equation A3 as shown in Equation A4.

where is
given as

We can rewrite Equation A4 as a probability density by
substituting in Equation A5, resulting in Equation A6 and the
corresponding plot of Figure 2.

We can replace the variable ∆ in Equation A5 with a wider
interval B, which is conceptually invoking the rectangular
integration approximation rule. As long as the interval is
reasonable, we will suffer little loss in precision. Thus, we
end up with a final expression as shown in Equation A7.

where B is the interval of interest about the point x.

(EQ. A3)P x∆( ) 2N Q x( ) Q x ∆+( )–{ } 1 2Q x( )–[ ] N{ } .=

(EQ. A4)P x( ) 2NQ ′ x( ) 1 2Q x( )–[ ] N∆=

Q ′ x( ) d
dx
------ Q x( )( ) d

dx
------ Erfc x( )( ) d

dx
------ 1 Erf x( )–( )–= = =

(EQ. A5)Q ′ x( ) 1

2π
-----------e

x
2

2
------–

.=

(EQ. A6)P x( ) 2N

2π
-----------e

x
2

2
------–

1 2Q x( )–[ ] N∆ .=

(EQ. A7)P x( ) 2N

2π
-----------e

x
2

2
------–

1 2Q x( )–[ ] N
B .=

Application Note 9718


